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Reaction forces on a relativistic point charge moving above a dielectric or a metallic half-space

D. Schieber and L. Scha¨chter
Department of Electrical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel

~Received 28 July 1997; revised manuscript received 15 December 1997!

We investigate the forces that act on a particle as it moves at a heighth above a half-space of dielectric or
lossy material. The expressions for the longitudinal and transverse forces are calculated numerically and
analytic expressions are presented for limit cases. In adielectric it is shown that the longitudinal force is zero
at velocities below the Cherenkov velocity and it reaches a constant value at high energies. The transverse
force below the Cherenkov velocity is the result of a superposition of evanescent waves only; in this regime it
increases with the momentum. Above the Cherenkov velocity propagating waves add their contribution to the
transverse force. For relatively low energies their contribution tends to increase the total force. At high energies
the total transverse force decays as 1/g. In the case of ametallic medium ~s!, the longitudinal force is
proportional toA(gb)3/sh0h when this quantity is smaller than unity and it reaches a constant value when
this parameter is much larger than unity. The transverse attraction force decreases monotonically with the
relativistic factorg. @S1063-651X~98!04205-6#

PACS number~s!: 41.75.2i, 41.60.2m, 41.20.2q
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INTRODUCTION

It is well known that if a charged particle moves in th
vicinity of a dielectric at a velocity higher than the pha
velocity of a plane wave in the corresponding material, th
Cherenkov radiation is emitted; its spectrum is a topic t
appears in many textbooks; see, e.g.,@1#. This radiation
comes at the expense of the kinetic energy of the particle
a previous study@2# we calculated the deceleration force th
acts on a particle as it moves in acylindrical vacuum channe
bored in an otherwise infinite dielectric material. In a simi
way we calculated@2# the force that acts on the charge wh
the dielectric medium was replaced by a metal@3#. In all
these cases the reaction force decelerates the particle. I
also shown@4,5# that the force becomes accelerating if t
medium is active.

The motion of electrons above dielectric or metallic s
faces is of interest since this may become one of the attr
ing ways to generate millimeter and submillimeter wave
diation without excitation of multiple modes in the syste
In particular, it is important to estimate the deceleratinglon-
gitudinal force that acts on the moving particle due to
proximity to material, as well as the attracting force in t
transversedirection. The advantages of open structures
be utilized in the case of particle accelerators, e.g., th
which rely on the Smith-Purcell effect@6–10# or planar~qua-
siopen! structures manufacture using very-large-scale in
grated technology, which recently has been attracting at
tion.

An extensive amount of work has been dedicated in
past to the motion of charged particles in the vicinity of
metallic half-space@11–18#. The main goal of these studie
is electron spectroscopy; in other words, electrons scatt
by a solid-state surface may provide important informat
about the characteristics of the medium. Specifically, exc
tion of plasmons and/or phonons@12,15,16,18# by grazing
electrons has been investigated extensively. The assump
common to all these studies is that the particles arenot rela-
tivistic and for an effective ‘‘interaction’’ their distance from
the surface is of the order of nanometers. The system e
sioned in this study consists of relativistic~even ultrarelativ-
571063-651X/98/57~5!/6008~8!/$15.00
n
t

In
t

r

as

-
t-
-
.

n
e

-
n-

e

ed
n
-

ns

vi-

istic! particles and their height above the surface is
smaller than a few micrometers. The goal of this study is
investigate the longitudinal and transverse forces on a bu
of charged particles as it moves above a metallic or dielec
half-space.

DEFINITION OF THE MODEL

Consider a charge2q moving at a velocityv parallel to a
half space of dielectric materiale r . A Cartesian coordinate
system is introduced: Itsx coordinate is parallel to the mo
tion of the particle and itsy coordinate is transverse to th
direction our particle moves, but parallel to the plane of
terface between the dielectric (z,0) and the vacuum (z.0)
as illustrated in Fig. 1. The electromagnetic field genera
by this moving charge, as measured in the laboratory fra
of reference in the absence of the dielectric half-space ca
derived from thex component of the magnetic vector pote
tial @Ax

(p)5bF (p)# and the scalar electric potential, whic
reads

F~p!5
2qg

4pe0

1

2p E
2`

`

dkxdkye
2 j @kxg~x2vt !1kyy#2uz2huAkx

2
1ky

2

3
1

Akx
21ky

2
. ~1!

The presence of the dielectric half-space causes additi
~secondary! potentials in the upper region~superscriptss and
u!, which are given by

S Ax
~s,u!

Ay
~s,u!

F~s,u!
D 5

2qg

4pe0

1

2p E
2`

`

dkxdky

3S v
c2 Rx

v
c2 Ry

Rx1
ky

gkx
Ry

D e2 j @kxg~x2vt !1kyy#2Akx
2
1ky

2z.

~2!
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57 6009REACTION FORCES ON A RELATIVISTIC POINT . . .
In expression~2! we used the Lorentz gauge. Similarly, th
secondary potentials in the lower half-space~superscripts
s,l ! are given by

S Ax
~s,l !

Ay
~s,l !

F~s,l !
D 5

2qg

4pe0

1

2p E
2`

`

dkxdky

3S v
c2 Tx

v
c2 Ty

1

e r
Tx1

ky

e rgkx
Ty

D e2 j @kxg~x2vt !1kyy#1Lz,

~3!

whereL[Aky
21(gkx)

2(12e rb
2). It should be pointed ou

that if the argument of the square root is negative, then th
are two possibilities

L[H 1 jAuky
21~gkx!

2~12e rb
2!u

2 jAuky
21~gkx!

2~12e rb
2u

for kx.0
for kx,0; ~4!

this is a direct result of the radiation condition.
In order to determine the amplitudesRx , Ry , Tx , andTy

we impose the boundary conditions for the tangential fi
components~Ex, Ey, Hx, andHy! at z50. These provide us
with four equations for the four amplitudes, i.e.,

kx

g
~R01Rx!1kyRy5

ky

e r
Ty1kxgS 1

e r
2b2DTx ,

ky~R01Rx!1
ky

22g2b2kx
2

gkx
Ry5

ky

e r
Tx1

ky
22g2b2e rkx

2

e rgkx
Ty ,

~5!

2Akx
21ky

2 Ry5LTy ,

Akx
21ky

2~R02Rx!5LTx ,

where

R0~kx ,ky!5
e2Akx

2
1ky

2h

Akx
21ky

2
. ~6!

Since we are interested only in the force that acts on
particle, we present here the explicit solution in the up

FIG. 1. Schematic of the system under consideration.
re

d

e
r

space, i.e., the amplitudesRx andRy . For this purpose, we
substituteTx andTy and obtain

Rx52
e r21

e r

kx
2~L1g2k!1ky

2~L2k!

k~L1k!~k1L/e r !
R0 ,

Ry52
e r21

e r

2gkxky

~L1k!~k1L/e r !
R0 . ~7!

With these expressions the forces that act on the particl~x
5vt, y50, z5h! read

S Fx

Fy

Fz

D 5
q2

4pe0

1

2p E
2`

`

dkxdkyR~kx ,ky!S jkx

jky

g
k

g

D e2kh,

~8!

where k[Akx
21ky

2 and R(kx ,ky)[Rx(kx ,ky)1(gky /
kx)Ry(kx ,ky), which after substituting the two expression
~7! reads

R52
e r21

e r

Lk1g2~k21b2ky
2!

~L1k!~k1L/e r !
R0 . ~9!

Next we examine the three expressions~8! for two different
cases:~i! lossless dielectric~Cherenkov! and~ii ! lossy mate-
rial ~Ohm!.

FORCES EXPERIENCED ABOVE A DIELECTRIC
MEDIUM

In the case of a material characterized by a scalar die
tric material it is convenient to use instead the ‘‘Cartesia
integration variableskx andky , a cylindrical set such that

kx5k cosc, ky5k sin c. ~10!

In addition, we define

f ~c,g![sin2 c1g2~12e rb
2!cos2 c ~11!

and bearing in mind that all the force components are r
functions@see Eq.~4!# we can write for the amplitude in Eq
~9! the expression

R̄~c,g![2
e r21

e r

j1g21g2b2 sin2 c

~11j!~11j/e r !
,

~12!

j~c,g![Au f ~c,g!u H 11
1 j

for f ~c,g!.0
for f ~c,g!,0.

With these definitions the three components of the force
acts on the particle read
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6010 57D. SCHIEBER AND L. SCHÄCHTER
S Fx~g!

Fy~g!

Fz~g!
D 5

q2

4pe0~2h!2

1

2p E
2p

p

dc R̄~c,g!S j cosc
j

g
sin c

1

g

D .

~13!

Note that in these expressionsk does not appear explicitly
This is because the integration overk is simple and is given
by

E
0

`

dk k e22kh5
1

~2h!2 . ~14!

Furthermore, sinceR̄ is an even functions ofc @see Eq.
~12!#, it is evident that the integrand ofFy is an odd function
of c and as such, the integral ofFy vanishes, as expected du
to the left-right symmetry of the system.

The other two components~longitudinal and transverse!
of the force have been calculated numerically. The gen
case is illustrated in the two frames of Fig. 2 fore r52 and 3.
As expected, the decelerating force is nonzero if the velo
particle is above the Cherenkov condition (b.1/Ae r) and it
approaches the asymptotic value of

Fx~g@1!.2
q2

4pe0~2h!2 32, ~15!

at high energies. This result is similar to the case when
particle moves in a dielectric channel of radiusR:

Fx~g@1!.2
q2

4pe0R2 32. ~16!

It is interesting to note that the factor 2 occurs in both cas
However, if the particle is at the same distance from
dielectric, i.e.,h5R, then the force is 4 times smaller in th
planar case.

FIG. 2. Normalized forces acting on a charged particle a
moves above a dielectric half-space. The left frame illustrates
longitudinal force and the right frame the transverse force. T
normalized longitudinal force has an asymptotic value of 2. T
transverse force peaks in the vicinity of the Cherenkov conditi
i.e., b;1/Ae r . The normalization is with respect toq2/4pe0(2h)2.
al
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e
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Expression~15! can be proved analytically. With this pur
pose in mind, we observe that ifg→` then the main con-
tribution to the integral forFx is from the region aroundc
.6p/2. It is convenient now to definec5p/22d, where
udu!p/2 and it represents one out of the four main con
butions. With this definition it is possible to approximatej
with

j~d,g!. j gdAe r21. ~17!

When evaluating the longitudinal force we have to take in
consideration all four~identical! contributions; hence the re
sulting integral reads

Fx~g@1!.2
q2

4pe0~2h!2 3
4

2p

1

e r
ReH j E

0

d0
d~2d!

3
2g2d~e r21!

~11 j gdAe r21!~11 j gdAe r21/e r !
J .

~18!

Upon defining a new variableu5gdAe r21 and denoting
the new limits of integration by (0,u0), the integral can be
calculated analytically:

Fx~g@1!.2
q2

4pe0~2h!2

4

p

1

e r21

3F E
0

u0
du

1

11~u/e r !
22E

0

u0
du

1

11u2G .
~19!

If we assume thatu0[d0gAe r21 is much larger than unity
we obtain exactly the result in Eq.~15!.

The transverseforce (Fz) presented in Fig. 2 will be re-
ferred to as the image-charge force since when the partic
at rest, the force corresponds to that of an image cha
located at a distance 2h from the original one, inside the
dielectric medium, its charge beingq(e r21)/(e r11). In or-
der to understand the behavior of the image-charge forc
will be convenient to examine more closely the integrand

R̃[R̃/g ~20!

of the integral corresponding toFz . Figure 3 illustrates this
integrand as a function of the variablec ~for e r54!. It shows
that as long as the particle’s energy is below the Cheren
condition, i.e., g<gc where gc[@12bc

2#21/2 and bc

[1/Ae r , the integrand is a monotonic function ofc. Its ab-
solute value increases withg. Consequently, the force tha
acts on this particle increases monotonically. When the
ergy of the particle exceedsgc , i.e., above the Cherenko
condition, the integrandR̃ has a minimum value at the poin
where f (c,g)50, which defines the so-called Cherenko
angle

cc~g,e r ![arctan~gAe rb
221!. ~21!

This angle splits the integration region into two parts:~a! the
contribution of the regularevanescentwaves, which is be-
tweencc(g,e r) andp/2, and~b! the contribution associate

it
e
e
e
,
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57 6011REACTION FORCES ON A RELATIVISTIC POINT . . .
with the propagating waves between 0 andcc(g,e r); we
shall refer to this contribution as the Cherenkov imag
charge force since it vanishes forg,gc ; note that these
waves occur only in the dielectric half-space. Before we
amine these two contributions let us examine the variation
three limiting cases of the integrandR̃(c50,g), R̃„c
5cc(g),g…, and R̃(c5p/2,g) as a function ofg. The left
frame in Fig. 4 shows that the last two terms are linear w
g ~for g.gc! and always negative. This is not the case wh
c50 and based on this specific case we conclude that t
is an entire range of anglesc for which the contribution of
the propagating waves is positive. In other words, part of
Cherenkov radiation emitted in the dielectric tends torepel
the point charge. In quantum-mechanical terms, the ‘‘Ch
enkov photon’’ emitted in the dielectric medium has som
momentum in the transverse (z) direction and at certain
angles~and energies! this momentum is balanced by the pa
ticle, otherwise the medium serves as a ‘‘momentum re
voir.’’ For any given angle there is a critical energygcr ,

FIG. 3. IntegrandR̃ of the integral for the transverse force as
function of c. Below the Cherenkov condition (g<gc) it is a
monotonic function ofc and its absolute value increases withg. For
g.gc the integrand has a peak determined byf (c,g)50.

FIG. 4. IntegrandR̃ of the integral for the transverse force. Th
left frame illustratesR̃„c5cc(g),g… and R̃(c5p/2,g) as a func-
tion of g ; both functions are monotonic and negative. On the ri
we plot R̃(c50,g) and as clearly revealed, this quantity can b
come positive corresponding to a repelling contribution to the tra
verse force.
-

-
f

h
n
re

e

r-

r-

defined as Re@R̃(c,gcr)#50, beyond which the contribution
to the force is positive. Figure 5 shows the variation of th
critical energy as a function ofc ~for e r54!.

At this point we are in a good position to explain th
behavior of the image-charge force. For this purpose we
fine the Cherenkov contribution to this force as

Fz
$C%~g![

q2

4pe0~2h!2 F 2

p E
0

cc~g!

dc R̃~c,g!G ~22!

and we shall refer to the ‘‘regular’’ contribution as the ev
nescent contribution defined as

F̄z
$E%~g![

q2

4pe0~2h!2 F 2

p E
cc~g!

p/2

dc R̃~c,g!G . ~23!

The two contributions are plotted in Fig. 6, which revea

t
-
s-

FIG. 5. Variation of the critical energy (gcr) as a function of the
anglec. For energies larger than (gcr) the contribution of the inte-
grand is positive, see the right frame of Fig. 4.

FIG. 6. Two contributions to the transverse force as a funct
of the momentum of the particle. Below the Cherenkov condit
only the evanescent waves contribute and the net force incre
with the momentum~gb!. Above the Cherenkov condition the eva
nescent wave contribution decreases to an asymptotic value
depends only on the dielectric coefficient. The Cherenkov contri
tion increases up to a maximum value, beyond which the repel
contribution starts to be significant and it reduces this force. T
normalization is with respect toq2/4pe0(2h)2.
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6012 57D. SCHIEBER AND L. SCHÄCHTER
several interesting trends.~i! Below the Cherenkov condition
only the evanescent waves contribute and the net force
creases with the momentum~gb!. As will be shown subse-
quently, this is equivalent to a situation in which the movi
charge experiences a force that corresponds to a large
electric coefficient or, equivalently, the polarization fie
‘‘measured’’ by a moving charge is larger than that expe
enced by a stationary one.~ii ! Above the Cherenkov condi
tion the evanescent wave contribution decreases to
asymptotic value that depends entirely on the dielectric
efficient. This asymptotic behavior can be understood if
recall that the integrand increases linearly withg ~see Fig. 4!
and at the same time the integration interval is invers
proportional tog. ~iii ! Both the evanescent and the Chere
kov contributions are discontinuous~as a function of the mo-
mentum! at b5bcr . However, the two ‘‘discontinuities’’
cancel each other and the total force is continuous.~iv! The
Cherenkov contribution increases up to a maximum va
beyond which the repelling contribution starts to be sign
cant and it reduces this force. The two opposite trends in
behavior of the Cherenkov and evanescent contributions
responsible for the peak in the image charge force as
vealed in the right frame in Fig. 2.

Before we proceed with the investigation of the Chere
kov force at the ultra-relativistic limit it is instructive to ex
amine the result of the total force as plotted in Fig. 6 fro
the point of view of the moving charge. Let us assume t
the latter is ‘‘aware’’ of the fact that it is located above
dielectric half-space, which means that the force it will e
perience can be interpreted in terms of an effective dielec
coefficient

Fz52
q2

4pe0~2h!2

eeff21

eeff11
. ~24!

Figure 7 illustrates the effective dielectric coefficient this o
server will experience as a function of its momentum~for
e r54!. When at rest it obviously experiences a dielect
coefficient of 4 and for relatively low energies it increases
a peak value~in this case;10!, after which it drops to val-
ues below 4. This infers that the polarization field measu
by the particle varies substantially for the various velociti

FIG. 7. Effective dielectric coefficient as ‘‘measured’’ by th
moving particles as a function of its momentum.
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Let us examine now the image-charge force at the
trarelativistic limit. The evanescent contribution is expect
to have a constant value that has been calculated alre
There are two interesting questions that can be addresse
it possible that the Cherenkov contribution will become po
tive ~we observed the trend to approach zero in Fig. 6! and is
it possible that the total image-charge force will becom
positive ~i.e., repelling!? In order to answer these questio
we have calculated numerically the integrals for larger val
of g and the result is presented in Fig. 8. As clearly revea
by the curves, the Cherenkov image-charge force does
verse its sign; however, its value is always smaller than
contribution of the evanescent waves. In fact, it can
shown that thetotal image-charge force is inversely propo
tional to g.

This asymptotic behavior can be proved analytically a
for this purpose we pursue a similar procedure as in the c
of the longitudinal force. The result is

Fz~g@1!.
q2

4pe0~2h!2g

4

2p
ReH E

0

d0
d~2d!

3
2g2~e r21!/e r

~11 j gdAe r21!~11 j gdAe r21/e r !
J

.
q2

4pe0~2h!2g

4g

pAe r21

3Farctan~u0!2arctanS u0

e r
D G

.2
q2

4pe0~2h!2

1

g
, ~25!

where this timeu05g(p/2)Ae r21 was taken at its extre
mum value and it was assumed that it is much larger t
unity; this is validated by the fact thatg@1. This asymptotic
behavior of the transverse force has important implicatio
since for high-energy particles it becomes much smaller t

FIG. 8. Two contributions to the transverse force~Cherenkov
and evanescent! as a function of the momentum. The evanesc
waves contribution is always negative, whereas the Cherenkov
changes sign and becomes repelling. The total force is always n
tive. The normalization is with respect toq2/4pe0(2h)2.
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57 6013REACTION FORCES ON A RELATIVISTIC POINT . . .
for a motionless particle releasing the constraint on the tra
verse dynamics of the particle above a dielectric medium

FORCES EXPERIENCED ABOVE A METALLIC MEDIUM

It has been suggested in the past that electrons ca
accelerated by using the inverse of the Smith-Purcell eff
Briefly, the idea is that a laser beam illuminates a grating
it generates a broad spectrum of spatial harmonics. On
these harmonics may accelerate the particle. We shall
discuss here the interaction of the bunch with an exte
radiation field, but we shall utilize the formalism develop
above in order to estimate the ‘‘dc’’ effect of asmoothme-
tallic surface on the particle.
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d
of
ot
al

The starting point is to replace the dielectric half-spa
with a lossy medium characterized by a conductivitys ;
hence

e r512 j
s

kxgbce0
. ~26!

It is convenient to define

s̄[sh0h ~27!

and u5kh; h05Am0 /e0. Using this notation it can be
shown thatLh5uA11 j s̄gb cosc/u and the three compo
nents of the force in Eq.~8! are given by
S Fx~gb!

Fy~gb!

Fz~gb!
D 5

2q2

4pe0h2 E
0

`

du u e22u
1

2p E
2p

p

dcS j cosc
j

g
sin c

1

g

D 11~gb!2
11sin2 c

11A11 j s̄gb cosc/u sgn~c!

11 j
gb

s̄
u cosc@11A11 j s̄gb cosc/u sgn~c!#

,

~28!
be-

nds

the
where sgn(c)51.0 if cosc.0 and21 otherwise. These ex
pressions are exact since no approximations have been
ployed so far. We shall next examine thelongitudinal force.
The quantitys̄ is much larger than 1 for all practical meta
andh of interest. Furthermore, the quantity

s̄gbucoscu
1

u
@1 ~29!

can be considered to be much larger than unity since
contribution of the integrand toFx when this condition is not
satisfied~c56p/2 or u→`! is zero. Consequently,

Fx.
2q2

4pe0h2 E
0

`

du u e22u
1

2p

3E
2p

p

dc cosc~ j !

11
11sin2 c

Aj a cosc/u sgn~c!

11 jA j

a
coscu sgn~c!cosc

,

~30!

where we used

a[s̄/~gb!3. ~31!

It is important to emphasize that in contrast to the param
s̄, which for all practical metals is much larger than un
~even ifh is of order of a few micrometers!, the parametera
can be either smaller or larger than 1 according to the m
mentum of the point charge. The variation of the longitudin
force with g is illustrated in Fig. 9. For the range of param
m-

e

er

-
l

eters presented in Fig. 9, there is virtually no difference
tween the values calculated using the exact expression~28!
and the approximation~30!.

One case can be evaluated analytically and it correspo
to the limit whena@1 or s̄@(gb)3. For this purpose the
integrand can be approximated by

11
11sin2 c

Aj a cosc/u sgn~c!

11 jA j

a
u cosc sgn~c!cosc

.11
11sin2 c

Aj a cosc/u sgn~c!
2 jA j

a
coscu

3sgn~c!cosc ~32!

and since the first term does not contribute to the integral,
force is given by

Fx

2q2/4pe0h2Aa
5S E

0

`

u1.5e22uD
3S 1

2p

&

2
4E

0

p/2

dc~11sin2 c!Acosc D
1S E

0

`

u1.5e22uD
3S 1

2p

&

2
4E

0

p/2

dc cos2.5 c D . ~33!
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6014 57D. SCHIEBER AND L. SCHÄCHTER
All the integrals can be evaluated numerically:

E
0

`

u1.5e22u50.235,

2

p E
0

p/2

dc~11sin2 c!Acosc51.068, ~34!

2

p E
0

p/2

dcAcos5 c50.458

and the result is

Fx.20.2543
q2

4pe0h2 A~gb!3

sh0h
. ~35!

The asymptotic line in Fig. 9 represents this expression.
observe that it is a reasonable approximation up to (gb)3

;s̄; in this calculations̄523106.
The result~35! should be compared with the decelerati

force that acts on the same particle as it moves in a cha
of radiusR bored in the metallic medium; this is given by@2#

FIG. 9. Normalized longitudinal force acting on a charged p
ticle as it moves above a metallic half-space;s̄523106. The two
solid lines represent the normalized force as determined from
exact expression~28! and the approximate expression~30!. The two
are identical for all practical purposes. The dashed line repres
the asymptotic expression in Eq.~30!. Note that it is a reasonabl
approximation up to (gb)3;s̄.
e

el

Fx.20.543
q2

4pe0R2 A~gb!3

sh0R
. ~36!

For h5R and the same material and momentum, the force
the bored channel is slightly larger. This result can be und
stood in terms of the ‘‘limited amount’’ of material in th
vicinity of the particle in the planar case compared to that
the cylindrical one.

As in the case of the dielectric medium, they component
of the force is zero due to the sinc function in the integrand;
therefore, we shall next evaluate the transverse force,
Fz . For a motionless particleb50, it can be readily checked
that the force corresponds exactly to that of an image cha
and it is given by

Fz~b50!5
2q2

4pe0~2h!2 . ~37!

At high energies we pursue the same approach as previo
@see the assumption~24!; however, note that in this case th
integrand no longer possesses the cosc term and therefore
the contribution of the region close to6p/2 is nonzero#.
Hence

Fz52
q2

4pe0h2 E
0

`

du u e22u
1

g

4

2p
E

0

p/2

dc

3Re5 11
11sin2 c

Aj a cosc/u

11 jA j

a
coscu cosc6 , ~38!

which at the limit ofa@1 reads

Fz@s̄@~gb!3#.2
q2

4pe0~2h!2

1

g
. ~39!

Thus the attracting image-charge force is inversely prop
tional to the energy of the point charge as in the ultrarela

-

e

ts
TABLE I. Comparison of the reaction forces in planar and cylindrical geometries.

Geometry Dielectric Metal

planar
Fi~g@1!.223

q2

4pe0~2h!2 Fi~sh0h@g3b3!.20.2543
q2

4pe0h2 A~gb!3

sh0h

F'~g@1!.2
q2

4pe0~2h!2

8

p2

1

g
F'~sh0h@g3b3!.2

q2

4pe0~2h!2

1

g

cylindrical
F i~g@1!.223

q2

4pe0R2 F i~sh0R@g3b3!.20.543
q2

4pe0R2 A~gb!3

sh0R

F i~g@1!.223
q2

4pe0R2
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DISCUSSION

We have investigated the reaction field that acts on a p
charge as it moves above dielectric or metallic half-spac
The longitudinal deceleration force is comparable to the c
when a similar particle moves in a cylindrical channel bor
in the same material. As in the latter case@2#, the decelera-
tion force in a dielectric medium has an asymptotic va
that is independentof the energy and material.

The transverse~image-charge! force was also evaluated
In the dielectric case, at low energies, it was found to
larger than the force corresponding to the~motionless! image
charge. After it reaches a peak value in the vicinity of t
Cherenkov velocity, it decreases as 1/g. This reduced force
can be explained in terms of the finite transverse momen
ys

H
,

nt
s.
e

d

e

e

m

of the Cherenkov photon, which is balanced in part by
particle. In the case of a lossy material this force decrea
monotonically withg. This behavior suggests that the tran
verse attraction of an electron bunch in an open-struc
accelerator might be less severe than previously thought.
the results are summarized in Table I and for convenience
also present the results from the case when the par
moves in a cylindrical channel bored in the same materia
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