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Reaction forces on a relativistic point charge moving above a dielectric or a metallic half-space
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We investigate the forces that act on a particle as it moves at a Heigihve a half-space of dielectric or
lossy material. The expressions for the longitudinal and transverse forces are calculated numerically and
analytic expressions are presented for limit cases.dielectricit is shown that the longitudinal force is zero
at velocities below the Cherenkov velocity and it reaches a constant value at high energies. The transverse
force below the Cherenkov velocity is the result of a superposition of evanescent waves only; in this regime it
increases with the momentum. Above the Cherenkov velocity propagating waves add their contribution to the
transverse force. For relatively low energies their contribution tends to increase the total force. At high energies
the total transverse force decays ag.lIn the case of ametallic medium (o), the longitudinal force is
proportional to\/(yﬁ)glanoh when this quantity is smaller than unity and it reaches a constant value when
this parameter is much larger than unity. The transverse attraction force decreases monotonically with the
relativistic factory. [S1063-651X98)04205-6

PACS numbdrs): 41.75~i, 41.60—m, 41.20-—q

INTRODUCTION istic) particles and their height above the surface is not
. Il K hat if a ch il in th smaller than a few micrometers. The goal of this study is to
It is well known that if a charged particle moves in the jestigate the longitudinal and transverse forces on a bunch

vicinity of a dielectric at a velocity higher than the phase of charged particles as it moves above a metallic or dielectric
velocity of a plane wave in the corresponding material, therhalf-space.

Cherenkov radiation is emitted; its spectrum is a topic that
appears in many textbooks; see, eld]. This radiation DEFINITION OF THE MODEL

comes at the expense of the kinetic energy of .the particle. In Consider a charge g moving at a velocity parallel to a
a previous study?2] we calculated the deceleration force that ¢ space of dielectric material . A Cartesian coordinate
acts on a particle as it moves ircglindrical vacuum channel  system is introduced: Its coordinate is parallel to the mo-
bored in an otherwise infinite dielectric material. In a Similartion of the partide and |t$/ coordinate is transverse to the
way we calculatedl2] the force that acts on the charge whendirection our particle moves, but parallel to the plane of in-
the dielectric medium was replaced by a mdtl In all  terface between the dielectriz<0) and the vacuumz0)
these cases the reaction force decelerates the particle. It was illustrated in Fig. 1. The electromagnetic field generated
also shown4,5] that the force becomes accelerating if the by this moving charge, as measured in the laboratory frame
medium is active. of reference in the absence of the dielectric half-space can be
The motion of electrons above dielectric or metallic sur-derived from thex component of the magnetic vector poten-
faces is of interest since this may become one of the attractial [Af(p)z,Bq)(p)] and the scalar electric potential, which
ing ways to generate millimeter and submillimeter wave ra+eads
diation without excitation of multiple modes in the system. —qy 1 (= . —
In particular, it is important to estimate the deceleratoy &P = — j dk,dkyekatvttkyl=lz=hiyir
gitudinal force that acts on the moving particle due to its Amey 2m )
proximity to material, as well as the attracting force in the 1
transversedirection. The advantages of open structures can O (1)
be utilized in the case of particle accelerators, e.g., those \/k>2<+ k§

which rely on the Smith-Purcell effeff—10] or planar(qua- . . .
siopen structures manufacture using very-large-scale inteThe presence of the dielectric half-space causes additional

grated technology, which recently has been attracting atter{_secondarypotgntials in the upper regidsuperscripts and
u), which are given by

tion.

An extensive amount of work has been dedicated in the/ AlSY .
past to the motion of charged particles in the vicinity of a| p(su) | _ —qr i f dk.dk
metallic half-spacé¢11—-18. The main goal of these studies q)’(’s,u) Ameg 2m ) e Y

is electron spectroscopy; in other words, electrons scattere

by a solid-state surface may provide important information v R

about the characteristics of the medium. Specifically, excita- c? X

tion of plasmons and/or phonon&2,15,16,18 by grazing v A —
electrons has been investigated extensively. The assumptions X . Ry e Ilkey(x—vt)+kyy]— VK +kiz.
common to all these studies is that the particlesrarterela-

tivistic and for an effective “interaction” their distance from R+ ﬁ R

the surface is of the order of nanometers. The system envi- S

sioned in this study consists of relativistieven ultrarelativ- 2
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space, i.e., the amplitudéy andR, . For this purpose, we
substituteT, and T, and obtain

&1 KZ(A + ¥%k) +K3(A = k) .
LS K(A+K)(k+Ale) O

e—1 2ykyky
& (A+K)(k+Ale)

R, =—

y Ro. Y

FIG. 1. Schematic of the system under consideration.  \wjth these expressions the forces that act on the particle

=vt, y=0,z=h) read
In expression(2) we used the Lorentz gauge. Similarly, the vk )

secondary potentials in the lower half-spaiperscripts

s,l) are given by l:kx
ASh Fx Q> 1 (= Tky
E | = = —kh
Az(s") :__qyi ” dk.dk Fy 4meg 27 j_ocdkxdkyR(kX’ky) z e,
H dgeg 2m J_oo Y z -
®sh 0 5
®
v
@ M
where kEx/kszr'ky2 and R(kX,k.y)ERx(kx,ky)Jr(yky/'
% v T e ik (x—vt) Tkyyl+Az k) Ry(ky,Kky), which after substituting the two expressions
c? Y ' (7)reads
T+ Ky T
& 1 vk Y Re €—1 Ak+ 'yz(kz-l-ﬁzk)zl) R ©
3) e (A+k)(k+Ale) O

where A= \Jky+ (vk)?*(1— &8%). It should be pointed out Next we examine the three expressidisfor two different
that if the argument of the square root is negative, then thergasesi) lossless dielectri€Cherenkoy and (ii) lossy mate-

are two possibilities rial (Ohm).
[+ (vk)* (1= e )] for k>0 @
= —j\/|k§+(ykx)2(1—er,82| for k,<0: FORCES EXPERIEN&EBSEAOVEA DIELECTRIC

this is a direct result of the radiation condition. In the case of a material characterized by a scalar dielec-
In order to determine the amplitud&, Ry, Ty, andTy  tric material it is convenient to use instead the “Cartesian”

we impose the boundary conditions for the tangential fieldntegration variable, andk,, a cylindrical set such that
componentsE, E,, H,, andH,) atz=0. These provide us

with four equations for the four amplitudes, i.e.,

ky=k cosy, ky=k sin . (10
X _ky 1
> (Ro+ Rx)+kyRy_E_r Ty+kyey f_r_IB Tx, In addition, we define
C(Rot R+ AL LT e i (. y)=si g+ (1-€p?)cos ¢ (11)
y( 0 X YKy v €r X € YKy v

(5) and bearing in mind that all the force components are real
functions[see Eq(4)] we can write for the amplitude in Eq.
— ki +kS Ry=AT,, (9) the expression

VKZ+KE(Ry—R)=AT,,

e—1¢&+ y2+ ';/2,82 Sir? v

E(dl!’}/)z_ ’
where & (1+6(1+¢le) (12
~\JKe+K2h +1 for f(¢,y)>0
Ro(kx,ky)=e—P+_k;. (6) E,y) =N (7)) +j for f(i,y)<0.
X y

Since we are interested only in the force that acts on th&Vith these definitions the three components of the force that
particle, we present here the explicit solution in the uppemcts on the particle read
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0.0 Expression(15) can be proved analytically. With this pur-
pose in mind, we observe that f—o then the main con-
tribution to the integral fof, is from the region arounds
==+ /2. It is convenient now to defing= 7/2— &, where
|8|<m/2 and it represents one out of the four main contri-
butions. With this definition it is possible to approximate
with

§(6,y)=]yove—1. (17)

When evaluating the longitudinal force we have to take into
2 L 10 Lo consideration all foufidentica) contributions; hence the re-
01 2 3 4 5 0 1 2 3 4 5 sulting integral reads

i

2
q . [%
FIG. 2. Normalized forces acting on a charged particle as it Fx(y>1)=— dren(2M)2 (2h)2 X_er € RQ{JL d(—=9)
moves above a dielectric half-space. The left frame illustrates the 0 '

Normalized Transverse Force

Normalized Longitudinal Force

longitudinal force and the right frame the transverse force. The 2 25(6 ~1)
normalized longitudinal force has an asymptotic value of 2. The X Y r .
transverse force peaks in the vicinity of the Cherenkov condition, (1+jyéve,—L)(1+jySve, —1lle,)
i.e., B~1/\e,. The normalization is with respect tf/4mey(2h)2. (18
j cosy Upon defining a new variable=y5ve,—1 and denoting
F.o(y) ) 1 i the new limits of integration by (Qg), the integral can be
q m — —sin i :
Fy(v) | = . f dy Ry | 7 v _ calculated analytically:
F, () meg(2h) 2w |- 1 2
i Y Fo(vy>1 a 4.1
Y (7 )__47760(2h)2; -1
(13
Note that in th iokisd lcitl w0 ! "y
0_te.t at in these expressioksdoes no_t appear exp I.CIt y. X J;) du T+ W) fo du 72l
This is because the integration oveis simple and is given r 19
by

. 1 If we assume thaty= 5oy\/er.— 1 is much larger than unity,
f dk k e ZKh=_—_ (14) ~ We obtain exactly the result in EqL5).

0 (2h) The transverseforce (F,) presented in Fig. 2 will be re-

o ferred to as the image-charge force since when the particle is
Furthermore, sinceR is an even functions ofy [see Eq. at rest, the force corresponds to that of an image charge
(12)], it is evident that the integrand &, is an odd function located at a distanceh2from the original one, inside the
of ¢ and as such, the integral Bf, vanishes, as expected due dielectric medium, its charge beingfe, —1)/(e +1). In or-
to the left-right symmetry of the system. der to understand the behavior of the image-charge force it

The other two componentgongitudinal and transverse will be convenient to examine more closely the integrand

of the force have been calculated numerically. The general _ ~
case is illustrated in the two frames of Fig. 2 fgr=2 and 3. R=R/y (20)
As expected, the decelerating force is nonzero if the velocity

A I : of the integral corresponding t6,. Figure 3 illustrates this
ggg:g:cﬁeasbt?]\:aeggsmci)qgtriin\ll(gl\tlj g %?d't'qa:é We) and it integrand as a function of the variahlgfor €, =4). It shows

that as long as the particle’s energy is below the Cherenkov
2 condition, i.e., y<7y, where y.=[1-8%"'? and B,
Fo(y>1)=— mxz, (15 =1/\/¢,, the integrand is a monotonic function ¢f Its ab-

0 solute value increases with Consequently, the force that
acts on this particle increases monotonically. When the en-
%rgy of the particle exceeds., i.e., above the Cherenkov
condition, the integran® has a minimum value at the point

at high energies. This result is similar to the case when th
particle moves in a dielectric channel of radiRs

2 where f(¢,y)=0, which defines the so-called Cherenkov
Fuly> === (16  angle
Yol v, € ) =arcta y\e 87— 1). (21

It is interesting to note that the factor 2 occurs in both cases.

However, if the particle is at the same distance from theThis angle splits the integration region into two patt:the
dielectric, i.e.,h=R, then the force is 4 times smaller in the contribution of the regulaevanescentaves, which is be-
planar case. tweeny(y,€,) and«/2, and(b) the contribution associated



57 REACTION FORCES ON A RELATIVISTIC POIN . ... 6011
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FIG. 3. IntegrancR of the integral for the transverse force as a  FIG. 5. Variation of the critical energyy) as a function of the
function of 4. Below the Cherenkov conditiony&y,) it is a  angley. For energies larger thary{) the contribution of the inte-
monotonic function ofy and its absolute value increases wjthFor ~ grand is positive, see the right frame of Fig. 4.
v> v, the integrand has a peak determinedfioy, y) =0.

defined as R&(,v.) =0, beyond which the contribution
with the propagating waves between 0 apgy,e,); we to_t_he force is positive. F_igure 5 shows the variation of this
shall refer to this contribution as the Cherenkov image-cfitical energy as a function af (for e, =4). _
charge force since it vanishes for<y.; note that these At this point we are in a good position to explain the
waves occur only in the dielectric half-space. Before we exPehavior of the image-charge force. For this purpose we de-
amine these two contributions let us examine the variation ofine the Cherenkov contribution to this force as
three limiting cases of the integran®(#=0,y), R(y¥ q
=y.(7),v), andR(y=m/2,y) as a function ofy. The left FiCh(y)= P Ty
frame in Fig. 4 shows that the last two terms are linear with meo(2h)
e e e e e e sl refr o the reqular”conviuton s h v
is an entire range of angleg for which the contribution of hescent contribution defined as
the propagating waves is positive. In other words, part of the o q
Cherenkov radiation emitted in the dielectric tendgepel FE(y)=—
the point charge. In quantum-mechanical terms, the “Cher- 4meo(2h)
enkov photon” emitted in the dielectric medium has some o L ,
momentum in the transverse)( direction and at certain The two contributions are plotted in Fig. 6, which reveals
angles(and energiesthis momentum is balanced by the par-
ticle, otherwise the medium serves as a “momentum reser- 0.00

2
(22)

2 (v ~
f dy R(4,y)

m™ Jo

2 2

27 awRenm

T ()

. (23

' | - ) Cherenkov
voir.” For any given angle there is a critical energy,,
o g 025
0.2 ]
N %
00| v B
"._.3 -0.50 - Evanescent
-5 y=n/ 02| ca-
(=]
3 1 :
E" gn 04} -0.75
g kE
-10 - 0.6
-1.00 ' '
=y ()
M 08 ¥y 00 10 20 30
[4
v
15 L ‘ ! ! 10 l l l \
0 2 4 6 8 10 0 2 4 6 8 10 FIG. 6. Two contributions to the transverse force as a function

Y ¥ of the momentum of the particle. Below the Cherenkov condition
— only the evanescent waves contribute and the net force increases
FIG. 4. Integran(B of the integral forjhe transverse force. The with the momentun{yg). Above the Cherenkov condition the eva-
left frame illustratesR(y= yc(y),y) andR(y=m/2,y) as a func- nescent wave contribution decreases to an asymptotic value that
tion of y; both functions are monotonic and negative. On the rightdepends only on the dielectric coefficient. The Cherenkov contribu-
we plot R(¢=0,y) and as clearly revealed, this quantity can be-tion increases up to a maximum value, beyond which the repelling
come positive corresponding to a repelling contribution to the transeontribution starts to be significant and it reduces this force. The
verse force. normalization is with respect tQ%/4ey(2h)2.
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FIG. 7. Effective dielectric coefficient as “measured” by the ~ FIG- 8. Two contributiqns to the transverse for@herenkov
moving particles as a function of its momentum. and evanescenis a function of the momentum. The evanescent

waves contribution is always negative, whereas the Cherenkov part

. . . o changes sign and becomes repelling. The total force is always nega-
several interesting trend§) Below the Cherenkov condition ive. The normalization is with respect tg/4meo(2h)>.

only the evanescent waves contribute and the net force int-
creases with the momentu(yg). As will be shown subse-
quently, this is equivalent to a situation in which the moving
charge experiences a force that corresponds to a larger
electric coefficient or, equivalently, the polarization field
“measured” by a moving charge is larger than that experi-

enced by a stationary onéi) Above the Cherenkov condi- tive (we observed the trend to approach zero in Fjgared is

tion the _évanescent wave contr|.but|on decregses fo ap possible that the total image-charge force will become
asymptotic value that depends entirely on the dielectric co- ositive (i.e., repelling? In order to answer these questions

eff|C|”e:1rE. ;rtms 'a?ymptoctil(': behaworl'can ll:)e qnderstlgod if w e have calculated numerically the integrals for larger values
recall that the integrand increases linearly Wy((se_e 19. 3 of y and the result is presented in Fig. 8. As clearly revealed
and at the same time the integration interval is mversel;by the curves, the Cherenkov image-charge force does re-
proportior_wal toy. (iii) B.Oth thg evanescent gnd the Cheren'verse its sign',however its value is always smaller than the
kov contributions are discontinuogas a function of the mo- contribution c;f the eva’mescent waves. In fact it can be

mentum at S=pB,. However, the two d|s<_:ont!nU|t|es shown that theotal image-charge force is inversely propor-
cancel each other and the total force is continudivs. The tional to y
Cherenkov contribution increases up to a maximum value, This asymptotic behavior can be proved analytically and

beyond WhiCh the rep'eIIing contribution starts to be Sigmﬁ'for this purpose we pursue a similar procedure as in the case
cant and it reduces this force. The two opposite trends in thgf the longitudinal force. The result is

behavior of the Cherenkov and evanescent contributions are
responsible for the peak in the image charge force as re- q? 4 e{fﬁo
d(—9)
0

Let us examine now the image-charge force at the ul-
arelativistic limit. The evanescent contribution is expected
6 have a constant value that has been calculated already.
There are two interesting questions that can be addressed: Is

it possible that the Cherenkov contribution will become posi-

vealed in the right frame in Fig. 2. Fy>1l)=———+——R

Before we proceed with the investigation of the Cheren- Ameo(2h)"y 2m
kov force at the ultra-relativistic limit it is instructive to ex- )
amine the result of the total force as plotted in Fig. 6 from 2y (&—1)l e ]

the point of view of the moving charge. Let us assume that X(1+j yoe,—1)(1+jyde —1le,)
the latter is “aware” of the fact that it is located above a

dielectric half-space, which means that the force it will ex- o2 4
perience can be interpreted in terms of an effective dielectric ~ > Y
coefficient Ameg(2h)y 7\fe,—1
2 )
Fo_ q €ert— 1 (24 x| arctariug) - arctan —
2 Amey(2h)? et 1’ r
> 1 )
Figure 7 illustrates the effective dielectric coefficient this ob- T 4mey(2h)2 y 29

server will experience as a function of its momentior

e,=4). When at rest it obviously experiences a dielectricwhere this timeuy=y(7/2)\e,—1 was taken at its extre-
coefficient of 4 and for relatively low energies it increases tomum value and it was assumed that it is much larger than
a peak valudin this case~10), after which it drops to val- unity; this is validated by the fact that>1. This asymptotic
ues below 4. This infers that the polarization field measuredbehavior of the transverse force has important implications
by the particle varies substantially for the various velocitiessince for high-energy particles it becomes much smaller than
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for a motionless particle releasing the constraint on the trans- The starting point is to replace the dielectric half-space

verse dynamics of the particle above a dielectric medium. with a lossy medium characterized by a conductivity
hence

FORCES EXPERIENCED ABOVE A METALLIC MEDIUM

It has been suggested in the past that electrons can be €=1—]j KeyBCeq’ (26)
accelerated by using the inverse of the Smith-Purcell effect. X 0
Briefly, the idea is that a laser beam illuminates a grating angk is convenient to define
it generates a broad spectrum of spatial harmonics. One of o
these harmonics may accelerate the particle. We shall not o=onoh 27
discuss here the interaction of the bunch with an external
radiation field, but we shall utilize the formalism developedand u=kh; 7,=+/ug/€y. Using this notation it can be
above in order to estimate the “dc” effect ofsamoothme-  shown thatAh=u\1+ joyB cosy/u and the three compo-

tallic surface on the particle. nents of the force in Eq8) are given by

|

boosu| 1+ sir? g

i + —
F(7B) 1 (n L siny T 1 T+ o yB cosyiu sgriy)
Fy(¥B) =2 5 du ue? dy| v ,

7T€0h T )7 . 7B —
FAvB) 1 [1+4j — ucosy[1+ Vi1+joyB cosylu sgn(y)]
Y

(28)

where sgng)=1.0 if cos¢>0 and—1 otherwise. These ex- eters presented in Fig. 9, there is virtually no difference be-

pressions are exact since no approximations have been eitween the values calculated using the exact expreg@@n

ployed so far. We shall next examine tlemgitudinalforce.  and the approximatiof30).

The quantityo is much larger than 1 for all practical metals ~ One case can be evaluated analytically and it corresponds

andh of interest. Furthermore, the quantity to the limit whena>1 or o> (yB)3. For this purpose the
integrand can be approximated by

_ 1
oyB|cos y| G>l (29 1+si?
1+
can be considered to be much larger than unity since the Vja cosylu sgn()
contribution of the integrand tB, when this condition is not j
satisfied(¢y= = 7/2 or u—o) is zero. Consequently, 14] [ U COS i SQN 1#)COS
a
—q2 ” i 2u 1

o e Y N

0 =1+ — —Jj\/— cosyu

1+sir? Vja cosylu sgr( ) a
1+
m Vja cosylu sgr(y) X sgriy)cos i (32)
X f dy cosy(j) :
- j and since the first term does not contribute to the integral, the
1+j - COS U sgn(¢)cos ¢ force is given by
(30 A :( fwul.sezu)
2 2
where we used —%/4meoh®\a 0
a=al(yB)°. (31) X 574J' dy(1+sir? ¢)+/cos )

It is important to emphasize that in contrast to the parameter
o, which for all practical metals is much larger than unity
(even ifh is of order of a few micrometersthe parametes

can be either smaller or larger than 1 according to the mo-
mentum of the point charge. The variation of the longitudinal %
force with y is illustrated in Fig. 9. For the range of param-

+

f l'Il.5e7 2u
0

Z?“f d¢00325¢) (33
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0.00

9’ (vB)°
4megR? N opoR’

F,=—0.54% (36)

-0.25

Exact & Approx. Forh=R and the same material and momentum, the force in

the bored channel is slightly larger. This result can be under-

Normalized Longitudinal Force

-0.50 - . . o
stood in terms of the “limited amount” of material in the
vicinity of the particle in the planar case compared to that in
0.75 the cylindrical one.
As in the case of the dielectric medium, th&eomponent
100 of the force is zero due to the sigfunction in the integrand;

0 250 500 750 1000 therefore, We_shall next .evaluat(.e the transverse force, i.e.,

F,. For a motionless particl8=0, it can be readily checked

that the force corresponds exactly to that of an image charge
FIG. 9. Normalized longitudinal force acting on a charged par-and it is given by

ticle as it moves above a metallic half-spaee=2x 10°. The two

Y

solid lines represent the normalized force as determined from the _qz
exact expressio(28) and the approximate expressi(80). The two F,(B=0)= Ameg(2h)2 (37

are identical for all practical purposes. The dashed line represents
the asymptotic expression in E(O). Note that it is a reasonable

approximation up to 8)3~ . At high energies we pursue the same approach as previously
[see the assumptidf24); however, note that in this case the
All the integrals can be evaluated numerically: integrand no longer possesses the ¢dsrm and therefore
the contribution of the region close ta 7/2 is nonzerg.
f u*%e24=0.235, Hence
0
q? w 14 (e
2 (w2 F,=— 2J’ duue‘zu——f dy
— J dy(1+sir? )+/cos = 1.068, (34) 4meoh® Jo y2m Jo
0
1+Sir?
14—
2 (w2 \/7
- - ja cosylu
- Jo dy/cos ¢=0.458 < Re _ | 39
]
and the result is 141V 5 008 u cosy
c oot [OB)” (35  which at the limit ofa>1 reads
o 47egh? onoh’
2
The asymptotic line in Fig. 9 represents this expression. We Flo>(yB)%]=— q—2 - (39)
observe that it is a reasonable approximation up )¢ 4meg(2h)” y

~o; in this calculationo=2x10°.

The result(35) should be compared with the decelerating Thus the attracting image-charge force is inversely propor-
force that acts on the same particle as it moves in a channéibnal to the energy of the point charge as in the ultrarelativ-
of radiusR bored in the metallic medium; this is given [8]  istic particle above a dielectric half-space.

TABLE |. Comparison of the reaction forces in planar and cylindrical geometries.

Geometry Dielectric Metal
planar o 9 (vB)
F”(’}’>l):_2><m FI\(0'7]oh>’}/3B3):—0.25‘D<W m
q? 81 53 q? 1
FL(7>1)*—W?; FJ_(0-770h>7.8)7_W;
2 2 3
q q (vB)
Fy>1)=—2X—— > 1333~ — \/
cylindrical i(r>1) 4megR? FilonoRey"67) 0'54X4we0R2 onoR
q2
Fi(y>1)=-2

X—
41regR?
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DISCUSSION of the Cherenkov photon, which is balanced in part by the
article. In the case of a lossy material this force decreases

We have investigated the reaction field that acts on a poi onotonically withy. This behavior suggests that the trans-

when imilar particle moves in a cylindrical channel bor ; ; .
in tie isme mzﬁZriacl eAs?netie Iatt(g ca([jﬁé? th((:a gecgle?g € the results are summarized in Table | and for convenience we
' ' also present the results from the case when the particle

tion fo_rce in a dielectric medium has an asymptotic Valuemoves in a cylindrical channel bored in the same material.
that isindependenbf the energy and material.

The transvers€image-chargeforce was also evaluated.
In the dielectric case, at low energies, it was foynd to be ACKNOWLEDGMENTS
larger than the force corresponding to theotionles$ image
charge. After it reaches a peak value in the vicinity of the This study was supported by the United States Depart-
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